Choosing Replanning Strategies for Unmanned Aircraft Systems
نویسندگان
چکیده
Unmanned aircraft systems use a variety of techniques to plan collision-free flight paths given a map of obstacles and nofly zones. However, maps are not perfect and obstacles may change over time or be detected during flight, which may invalidate paths that the aircraft is already following. Thus, dynamic in-flight replanning is required. Numerous strategies can be used for replanning, where the time requirements and the plan quality associated with each strategy depend on the environment around the original flight path. In this paper, we investigate the use of machine learning techniques, in particular support vector machines, to choose the best possible replanning strategy depending on the amount of time available. The system has been implemented, integrated and tested in hardware-in-the-loop simulation with a Yamaha RMAX helicopter platform.
منابع مشابه
Choosing Path Replanning Strategies for Unmanned Aircraft Systems
Unmanned aircraft systems use a variety of techniques to plan collision-free flight paths given a map of obstacles and nofly zones. However, maps are not perfect and obstacles may change over time or be detected during flight, which may invalidate paths that the aircraft is already following. Thus, dynamic in-flight replanning is required. Numerous strategies can be used for replanning, where t...
متن کاملDesigning and Modeling a Control System for Aircraft in the Presence of Wind Disturbance (TECHNICAL NOTE)
This paper proposes a switching adaptive control for trajectory tracking of unmanned aircraft systems. The switching adaptive control method is designed to overcome the wind disturbance and achieve a proper tracking performance for control systems. In the suggested system, the wind disturbance is regarded as a finite set of uncertainties; a controller is designed for each uncertainty, and a per...
متن کاملIn-Trim Flight Investigations of a Conceptual Fluidic Thrust-Vectored Unmanned Tail-Sitter Aircraft
The feasibility of using a stand alone Fluidic Thrust-Vectoring (FTV) system for the purpose of longitudinal trim of an unmanned aerial vehicle is the focus of the research presented in this paper. Since the fluidic thrust vectoring requires high pressure secondary air to deflect the engine exhaust gases, this research also provides an analytical toolset for preliminary sizing of a suitable sec...
متن کاملDeveloping Operator Capacity Estimates for Supervisory Control of Autonomous Vehicles
OBJECTIVE This study examined operators' capacity to successfully reallocate highly autonomous in-flight missiles to time-sensitive targets while performing secondary tasks of varying complexity. BACKGROUND Regardless of the level of autonomy for unmanned systems, humans will be necessarily involved in the mission planning, higher level operation, and contingency interventions, otherwise know...
متن کاملAssessing operator strategies for adjusting replan alerts in controlling multiple unmanned vehicles
This study examined the impact of allowing an operator to adjust the rate of prompts to view automation-generated plans on operator performance and workload when supervising a decentralized network of heterogeneous unmanned vehicles. Background: Future unmanned vehicles systems will invert the operator-to-vehicle ratio so that one operator can control multiple vehicles with different capabiliti...
متن کامل